On Sum of Powers of the Laplacian and Signless Laplacian Eigenvalues of Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Sum of Powers of the Laplacian and Signless Laplacian Eigenvalues of Graphs

Let G be a graph of order n with signless Laplacian eigenvalues q1, . . . , qn and Laplacian eigenvalues μ1, . . . , μn. It is proved that for any real number α with 0 < α 6 1 or 2 6 α < 3, the inequality qα 1 + · · · + qα n > μ1 + · · · + μn holds, and for any real number β with 1 < β < 2, the inequality q 1 + · · ·+ q n 6 μβ1 + · · ·+ μ β n holds. In both inequalities, the equality is attaine...

متن کامل

Some remarks on the sum of the inverse values of the normalized signless Laplacian eigenvalues of graphs

Let G=(V,E), $V={v_1,v_2,ldots,v_n}$, be a simple connected graph with $%n$ vertices, $m$ edges and a sequence of vertex degrees $d_1geqd_2geqcdotsgeq d_n>0$, $d_i=d(v_i)$. Let ${A}=(a_{ij})_{ntimes n}$ and ${%D}=mathrm{diag }(d_1,d_2,ldots , d_n)$ be the adjacency and the diagonaldegree matrix of $G$, respectively. Denote by ${mathcal{L}^+}(G)={D}^{-1/2}(D+A) {D}^{-1/2}$ the normalized signles...

متن کامل

Signless Laplacian eigenvalues and circumference of graphs

In this paper, we investigate the relation between the Q -spectrum and the structure of G in terms of the circumference of G. Exploiting this relation, we give a novel necessary condition for a graph to be Hamiltonian by means of its Q -spectrum. We also determine the graphs with exactly one or two Q -eigenvalues greater than or equal to 2 and obtain all minimal forbidden subgraphs and maximal ...

متن کامل

Seidel Signless Laplacian Energy of Graphs

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

متن کامل

On the sum of signless Laplacian eigenvalues of a graph

For a simple graph G, let e(G) denote the number of edges and Sk(G) denote the sum of the k largest eigenvalues of the signless Laplacian matrix of G. We conjecture that for any graph G with n vertices, Sk(G) ≤ e(G) + k+1 2 for k = 1, . . . , n. We prove the conjecture for k = 2 for any graph, and for all k for regular graphs. The conjecture is an analogous to a conjecture by A.E. Brouwer with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2010

ISSN: 1077-8926

DOI: 10.37236/387